Calculation Progression Policy

"Go down deep enough into anything and you will find mathematics."

EYFS - YEAR SIX

SEPTEMBER 2022
September 2023

EYFS

Key Vocabulary			
Number	Geometry	Statistics	Measurement
number, subitising, sort, group, digit, one more, one less, matched, fewer, greater than, less than, equal to, most, least, fewest, smallest, greatest, altogether, group, number sentence, take away, add, number bond, part-whole sharing, grouping, doubling, halving half, quarter, parts of a whole.	side, rectangle, square, triangle, circle, 2D shape, 3D shape, cube, cuboid, sphere, pyramid, cylinder, cone, circle, pattern, flat, curved, shape, face, edge, vertex, vertices, position, left, right, forwards, backwards, above, below, top, middle, bottom, up, down, in between, over, under, direction.	count, sort, group, set, list, tally.	long, longer, short, tall, tallest, tallest, length, height, compare, measure, full, empty, days of the week, morning, afternoon, evening, night, before, after, next, last, clock, watch, money, pound, pence, coin, note.

Addition

SUBJECT TO CHANGE

In EYFS pupils should be developing their concept of the number system through the use of concrete materials and pictorial representations. They should experience practical calculation opportunities using a wide variety of equipment, e.g. role play, outdoor play, counters, cubes, numicon, ten frames etc. They develop ways of recording calculations using pictures, etc.

Pupils must be provided with opportunities to develop their skills so that they are able to count reliably, including one to one correspondence and count on from a given number.
Pupils must be provided with many opportunities to subitise numbers so they are equipped to calculate rather than count as they progress through their learning. Pupils should be given the opportunity to count out sets of objects and then combine them to make a total.

Pupils should use counters or cubes in a part-whole model to find the whole.
is the
 same as

is the
same as

First

Subtraction
 SUBJECT TO CHANGE

In EYFS pupils should be developing their concept of the number system through the use of concrete materials and pictorial representations. They should experience practical calculation opportunities using a wide variety of equipment, e.g. role play, outdoor play, counters, cubes, numicon, ten frames etc. They develop ways of recording calculations using pictures, etc.

Pupils should recognise different combinations of making single digit numbers using part whole, numicon and tens frame. E.g. 7 can be made as:

Subitising
Show the dots for 3 seconds. How many dots can you see? How did you see them? Did you calculate? E.g.. 9 + 1 and $4+5$

Pupils to use counters or cubes to represent objects in a part-whole model.

Pupils should use a number track and a counter. They start at the larger number and count back the smaller number to find the answer.

Pupils should be able to compare the amount in each group.

Division

SUBJECT TO CHANGE

Real life contexts

Grouping

Mum has 6 socks. She grouped them into pairs. How many pairs did she make?

Sharing

I have 15 sweets. I want to share them with my 3 friends. How many will we have each?

Pictorial

Year 1

Key Vocabulary			
Number	Geometry	Statistics	Measurement
number, subitising, sort, group, digit, one more, one less, matched, fewer, greater than, less than, equal to, most, least, fewest, smallest, greatest, number line, number track, pattern, order, tens, ones, compare, 100 square, number square, place value grid, numeral, partition, group, part whole, plus, whole, part, number sentence, altogether, in total, add, count on, missing part, take away, subtract, count backwards, difference, in total, addition, subtraction, number bond, part-whole, fact family, tens, ones, equal groups, array, row, column, double, twice, share, sharing, grouping, multiply, fraction, half, halves, quarter, parts of a whole, equal parts	turn, half turn, quarter turn, three quarter turn, whole turn, position, left, right, forwards, backwards, above, below, top, middle, bottom, up, down, in between, 3D shape, cube, cuboid, sphere, pyramid, cylinder, cone, 2D shape, circle, triangle, rectangle, face, edge, vertex, vertices, pattern, repeated	count, sort, group, set, list, tally	before, after, yesterday, today, tomorrow, day, week, lower, faster, month, year, calendar, date, minute hand, hour hand, o'clock, half past, second, minute, hour, heavier, heaviest, lighter, capacity, balance scales, full, empty, weight, weigh, balanced, estimate, pound, pence, coin, note, long, longer, longest, short, shorter, shortest, tall, taller, tallest, length, height, compare, measure, distance, ruler, centimetre

Addition

Counting and adding more

3

Understanding teen numbers as a complete 10 and some more

Adding by counting on

Subtraction

Finding a missing part, given a whole and a part

$$
5-4=\square
$$

Find the difference

$5-4=1$
The difference between 5 and 4 is 1 .
inippit

8 is 2 more than 6.
6 is 2 less than 8.
The difference between 8 and 6 is 2 .

Multiplication

Recognising and making equal groups
Three equal groups of 4 . Four equal groups of 3.

8%B

Finding the total of groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

옹ㅇ 아 오 엉 앙 $2+2+2+2+2=$

\qquad groups of \qquad pencils.

There are

\qquad groups of \qquad flowers.

There are 5 pens in each pack ...
5...10...15...20...25...30...35...40...

There are \qquad flowers in each bunch.
There are \qquad bunches.
There are \qquad flowers altogether.
-00000000000000000000-

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

Division

Grouping

There are 10 in total. There are 5 in each group. There are 2 groups.

There are \qquad altogether. There are \qquad equal groups of \qquad -

I have 10 cubes, can you share them equally in 2 groups?

$$
6 \div 2=3
$$

3	3

Year 2

Key Vocabulary			
Number	Geometry	Statistics	Measurement
tens, ones, hundreds, place value grid, partition, numeral, more, fewer, fewest, greatest, smallest, greater than, less than, fact family, number sentence, number bond, column, 10 more, 10 less, bar model, represent, exchange, difference, subtract, tens, ones, total, equal groups, share, group, multiply, multiplication, times-table, times, divide, division, odd, even, fraction half, halves, quarter, parts of a whole, equal parts, whole, third, numerator, denominator, fraction bar, non-unit fraction, unit fraction, equal, three quarters	3D shape, cube, cuboid, sphere, pyramid, cylinder, cone, 2D shape, circle, triangle, rectangle, face, edge, vertex, vertices, pattern, repeated, quadrilateral, polygon, prism, hexagon, octagon, hemisphere, symmetry, line of symmetry, symmetrical, curved surface, anticlockwise, clockwise, turn, half turn, quarter turn, three quarter turn, whole turn, left, right, forwards, backwards, middle, forwards, backwards	table, block diagram, tally chart, pictogram, key	length, centimetre, metre, longer, shorter, metre stick, height, width, compare, distance, pound, pence, coin, note, change, £, mass, balance, weighing scales, capacity, estimate, approximation, gram, kilogram, litre, millilitre, volume, temperature, thermometer, degrees Celsius, heavier than, lighter than, hundreds, o'clock, half past, minute hand, hour hand, duration, quarter past, quarter to

Addition

Adding the 1s

30

Add to the next 10

$55+\square=60$

$86+\square=90$

Add the 1 s and then 10 s separately

Subtraction bridging 10 using number bonds

Subtracting a single-digit number bridging 10

Subtract ones from a 2-digit number

$$
43-10=33
$$

$30-3=27$
$60-3=57$
$90-3=87$
$41-6=41-1-5$

Subtract tens and ones from a 2-digit number

Subtract tens using known bonds

Multiplication

3 groups of 5 chairs 15 chairs altogether

Equal groups and repeated edition

\bigcirc
OO
\bigcirc
$\bigcirc \bigcirc$
\bigcirc

3 groups of 5 15 in total

$$
\begin{aligned}
& 5+5+5=15 \\
& 3 \times 5=15
\end{aligned}
$$

Using arrays to represent multiplication and support understanding

\qquad $+$ \qquad $+$ \qquad $=18$
\qquad
\qquad $=18$

There are \qquad equal groups with \qquad in each group.
There are three \qquad

This is 2 groups of 6 and also 6 groups of 2 .

I can see 6 groups of 3 I can see 3 groups of 6 .
$4+4+4+4+4=20$
$5+5+5+5=20$
$4 \times 5=20$ and $5 \times 4=20$

$$
\text { Learning } \mathrm{x} 2, \mathrm{x} 5 \text { and } \times 10 \text { table facts }
$$

0000000000

0000000000

0000000000

$1 \times 10=\square$
$2 \times 10=\square$
$3 \times 10=\square$
$4 \times 10=\square$
$5 \times 10=\square$
$6 \times 10=\square$
$7 \times 10=\square$
$8 \times 10=\square$
$9 \times 10=\square$
$10 \times 10=\square$
$11 \times 10=\square$
$12 \times 10=\square$

Division

There are 4 groups now.
12 divided into groups of 3 .
$12 \div 3=4$
There are 4 groups.
$12 \div 6=2$

$$
\begin{aligned}
& I 2 \div 2=6 \\
& 0>O O O O O O O O O O O O O O O O O O
\end{aligned}
$$

Using known times-tables to solve divisions

4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .

60
$1 \times 10=10$
$2 \times 10=20$
$3 \times 10=30$
$4 \times 10=40$
$5 \times 10=50$
$6 \times 10=60$
$7 \times 10=70$
$8 \times 10=80$
I used the 10 times-table to help me. $3 \times 10=30$.

I know that 3 groups of 10 makes 30 , so I know that 30 divided by 10 is 3 .

$$
3 \times 10=30 \text { so } 30 \div 10=3
$$

Year 3

Key Vocabulary			
Number	Geometry	Statistics	Measurement
thousands, hundreds, tens, ones, place value, more, less, greater than, less than, equal to, order, compare, estimate, exchange, addition, subtraction, mental method, column method, exchange, estimate, approximate, multiple, digit, equal, multiply, divide, times-table, sharing, grouping, array, bar model, remainder, repeated addition, multiplication sentence, division statement, division fact, compare, more than, less than, greater than, equals, equally, least, most, share, partition, multi-step, equal parts, whole, unit fraction, equation, integer, non-unit fraction, numerator, denominator, represent, share, group, mixed number, whole number, divide, set of objects, multiply, tenth, interval, equivalent, equivalent fraction, compare, add, subtract, fraction, whole, greater than, less than, equal to, divide, difference, inequality statement	right angle, obtuse, acute, parallel, perpendicular, vertical, horizontal, triangle, quadrilateral, kite, trapezium, rhombus, parallelogram, cuboid, triangular prism, square-based pyramid, cone cylinder, edge, face, vertices, clockwise, anticlockwise	pictogram, key, bar chart, scale, vertical axis, horizontal axis, table, row, column	length, height, width, perimeter, distance, centimetre, millimetre, metre, unit of measurement, measure, add, subtract, multiply, equivalent, convert, greater than, less than, ruler, metre stick, pound, pence, convert, total, difference, change, mass, weight, measure, scale, interval, gram, kilogram, capacity, litre, millilitre, convert, month, year, midnight, midday, am, pm, duration, estimate, consecutive, hour, minute, second, past, to, start, end, digital clock, analogue clock

Addition

Adding 100s

3-digit number +1 s , with exchange

3 hundreds +4 hundreds $=7$ hundreds $300+400=700$

3-digit number + 3-digit number, exchange required

3 -digit number + 10s, with exchange

$385+50$
There are 8 tens and 5 tens.
That is 13 tens.
$385+50=300+130+5$
$385+50=435$
3-digit number + 2-digit number, exchange required

Multiplication

Understanding equal grouping and repeated addition

Using commutativity to support understanding of the times－tables
dII NII dII dII dII dIII 1 know that $7 \times 4=28$

so，I know that
4 groups of $7=28$ and
7 groups of $4=28$ ．

Understanding and using $\mathrm{x} 3, \mathrm{x} 2, \mathrm{x} 4$ and x 8 tables．

$$
\begin{aligned}
& 2 \times 5=10 \\
& 5 \times 2=10 \\
& 10 \div 5=2 \\
& 10 \div 2=5
\end{aligned}
$$

Multiplying a 2－digit number by a 1－digit number

$3 \times 4=12$

$3 \times 24=72$

（－）（1）（6）（0）

4 groups of 2 ones is 8 ones．， $1020304050 \quad 607080$ 4 groups of 2 tens is 8 tens．

$$
\begin{aligned}
& 4 \times 2=8 \\
& 4 \times 20=80
\end{aligned}
$$

Multiplying a 2－digit number by a 1－ digit number，expanded column method

T	0		
｜דापाष			5
पाएाएप	ロロー日ロ	\times	6
पापाए	ロロー日ロ		
피피네			
Wाum	ロロロロロ	＋	
－	ロロロ日		

$4 \times 23=$ ？

$4 \times 23=92$

$6 \times 10 \quad 5 \times 23=?$
$\begin{aligned} 5 \times 3 & =15 \\ 5 \times 20 & =100\end{aligned}$
$5 \times 20=100$
$5 \times 23=115$

$24 \div 8=3$

$$
32 \div 8=4
$$

Using known facts to divide multiples of 10

12 tens shared into 3 equal groups． 4 tens in each group．

Make 6 ones divided by $3 . \quad 180 \div 3=$ ？

Now make 6 tens divided by 3.

180 is 18 tens．
18 divided by 3 is 6 ． 18 tens divided by 3 is 6 tens．

$$
\begin{aligned}
& 18 \div 3=6 \\
& 180 \div 3=60
\end{aligned}
$$

2－digit number divided by 1－digit number，with remainders

Make 29 from place value equipment． Share it into 2 equal groups．

There are two groups of 14 and 1 remainder．

67 children try to make 5 equal lines．

		$67=50+17$
（－TITT	（80日 ${ }^{\text {a }}$	$50 \div 5=10$
－Tm	（0日回	$17 \div 5=3 \text { remainder } 2$

$22 \div 5=4$ remainder 2

（1）	I need to part by 3.
（1mmim	$42=30+12$
Then divide the 1 s ．	$30 \div 3=10$
－080	$12 \div 3=4$
8008	$\begin{aligned} & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$

Year 4

Key Vocabulary			
Number	Geometry	Statistics	Measurement
thousands, hundreds, tens, ones, rounding, order, more than, less than, partition, numeral, nearest, distance, ascending, descending, negative, step, multiple, greater than, less than, addition, total, more than, subtraction, less than, column method, estimate, how much, strategy, efficient, accurate, exact, diagram, fact, multiply, divide, multiplication facts, division facts, lots of, groups of, times-table, array, partition, bar model, part-whole model, remainder, factor, factor pair, commutative, Tenths, hundredths, simplify, equivalent, numerator, denominator, fraction, mixed number, add, subtract, fractions of an amount, improper fraction, simplest fraction, decimal point, greater than, equivalent, less than, decimal, 0.1, 0.01, whole number, equal order, compare, convert, decimal place, ascending, descending	quadrilateral, triangle, regular, irregular, interior angle, angle, acute, obtuse, reflect, right angle, symmetrical, isosceles, scalene, equilateral, line of symmetry, reflective symmetry, position, horizontal, vertical, up, down, left, right, coordinates, square, rectangle, plot, vertex, vertices, point, grid	data, line graph, pictogram, bar chart, table, altogether, more than, greatest, smallest, continuous data, compare	length, width, perimeter, distance, rectangle, square, centimetre, metre, around, rectilinear shape, kilometre, area, space, unit, least, greatest, triangle, quadrilateral, reflection, rotation, formula, notes, coins, pounds, pence, add, subtract, change, round to the nearest, order, greater than, less than, cheaper, more expensive, estimate, over estimate, under estimate, notation, total, convert, compare, unit of time, second, minute, hour, day, week, month, year, 12-hour, 24-hour, analogue, digital, am, pm

Addition

Th	H	T	0
\bigcirc	-)ㅇㅇㅇ		
\cdots-)	\bigcirc	$\bigcirc \odot$	

4 thousands equal 4,000. 1 thousand is 10 hundreds.

Choosing mental methods where appropriate $4,256+300=$?

$$
\begin{aligned}
& 2+3=5 \\
& 4,256+300=4,556
\end{aligned}
$$

$$
200+300=500
$$

I can add the 100s mentally.
$200+300=500$
Make 1,405 from place value equipment.
Add 2,000.
Now add the 1,000 s.
1 thousand +2 thousands $=3$ thousands

$$
1,405+2,000=3,405
$$

So, $4,256+300=4,556$
Representing additions and checking strategies

Subtraction

Choosing mental methods where appropriate

Column subtraction with exchange across more than one column
$2,502-243=$?

	Th	H	T	O
		7	q	q
+		5	7	4
	1	3	7	3
	1	1	1	

-|IIIIIIIII
\rightarrow 昭昭

Multiplication
 Multiplying by multiples of 10 and 100
 $$
4 \times 7=28
$$

 3 groups of 4 ones is 12 ones.
 3 groups of 4 tens is 12 tens.

 $4 \times 70=280$
 $40 \times 7=280$
 $4 \times 700=2,800$ $\operatorname{sings}_{\text {gana }}^{\operatorname{son}} 400 \times 7=2,800$

Understanding timestables up to 12×12

Column multiplication for 2-and 3-digit numbers multiplied by a single digit
Make 4×136 using equipment.

$\begin{aligned} & 2 \times 6 \times 10=120 \\ & 12 \times 10=120 \end{aligned}$	23		
	\times		5
$\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$		1	5
	1	0	0
	I	1	5

23

I can work out how many $1 \mathrm{~s}, 10$ s and 100 s.

312
There are 4×3 tens ... 12 tens
\times

Division

I know that $5 \times 7=35$

Understanding the relationship between multiplication and division, including times-tables

so I know all these facts:

$5 \times 7=35$
$7 \times 5=35$
$35=5 \times 7$
$35=7 \times 5$
$35 \div 5=7$
$35 \div 7=5$
$7=35 \div 5$
$5=35 \div 7$
$28 \div 7=4$

$4 \times 6=24$
24 is 6 groups of 4 . 24 is 4 groups of 6 .

24 divided by 6 is 4 . 24 divided by 4 is 6 .

Dividing 2-digit and 3-digit numbers by a single digit by partitioning into100s, 10s and 1 s

Dividing multiples of 10 and100 by a single digit

$900 \div 3=\square$

$$
15 \div 3=5
$$

$$
150 \div 3=50
$$

$$
1500 \div 3=500
$$

-0.0.0.0.0.

$72 \div 5=14$ remainder 2

Year 5

Key Vocabulary			
Number	Geometry	Statistics	Measurement
ones, tens, hundred, thousands, ten thousands, hundred thousands, million, sequence, place value, partition, estimate, round, compare, order, equivalent, greater than, less than, convert, add, subtract, ones, tens, hundreds, thousands, ten thousands, mentally, inverse, round, estimate, distance chart, prime number, composition number, square number, cube number, inverse operation, factor prime factor, multiply, divide, multiple, place value, partition, equal, remainder, total, equivalent, numerator, denominator, whole, fraction, simplify, expand, division, improper, mixed number, convert, sequence, order, greater than, less than, equal to, proper fraction, improper fraction, efficient, common denominator, equal parts, divide, multiply, fractions of an amount, operator, decimal, decimal place, tenth, hundredths, thousandths, decimal point, place value, digit, fraction, add, subtract, multiply, divide, whole, column, exchange, per cent, percentages	angle, whole turn, right angle, acute angle, obtuse angle, reflex angle, degree, interior angle, orientation, clockwise, anticlockwise, parallel, perpendicular, angle, quadrilateral, view, regular, irregular, 3D shape, pyramid, sphere, cone, hexagon, pentagon, triangle, top view, plan view, side view, reflection, translation, vertex, vertices, coordinates, mirror line, horizontal axis, vertical axis	graph, line graph, table, dual line graph, horizontal, vertical, twoway table, scale, axis/axes, data, plot/plotted, tallies/tally, digit	perimeter, distance, area, space, length, width, centimetre, square centimetre, metre, square metre, scale, compare, estimate, formula, 2d shape, brackets, convert, metric unit, imperial unit, kilo, kilogram, gram, millimetre, centimetre, metre, kilometre, litre, millilitre, pound, ounce, inch, foot, yard, pint, gallon, stone, approximately, volume, cube, cuboid, 3D shape, solid, capacity, calculate, estimate, unit cube, least, greatest

Addition Column addition with whole numbers

Adding tenths

Adding decimals using column addition

$$
\begin{array}{r}
0 \cdot \text { Tth Hth } \\
\hline 5 \cdot 00 \\
+1 \cdot 25 \\
\hline 6 \cdot 25 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
\mathrm{O} \cdot \\
\hline 0 \cdot
\end{array} \begin{array}{r}
\text { Tth Hth } \\
\hline 0 \cdot \\
0 \cdot \\
\hline 0 \cdot 3
\end{array}
$$

$$
\begin{array}{r}
\mathrm{O} \cdot \text { Tth Hth } \\
\hline 3 \cdot 4 \\
+0 \cdot 6 \\
\hline
\end{array}
$$

$$
\frac{\mathrm{O} \cdot \text { Tth Hth }}{0 \cdot 2 \quad 3}
$$

$$
\begin{aligned}
& \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\
& 6 \text { tenths }+2 \text { tenths }=8 \text { tenths }
\end{aligned}
$$

$$
\begin{array}{r}
0 \cdot 4 \quad 5 \\
\hline 0 \cdot 6 \quad 8 \\
\hline
\end{array}
$$

$$
0.6+0.2=0.8
$$

Subtraction Column subtraction with whole numbers

Now subtract the 10 s.
Exchange I hundred for 10 tens.

TTh	Th	H	T	O	
	I	5	7	3	5
-		2	5	8	2
					3

Subtract the 100 s, 1,000 s and 10,000 s.

Subtracting decimals

$\begin{array}{r}0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 7 r \\ -2 \cdot 2 \quad 5 \\ \hline\end{array}$
Exchange I tenth for 10 hundredths.

$1 \mathrm{~m}-\square \mathrm{m}=\square \mathrm{m}$
Now subtract the 5 hundredths.

Now subtract the 2 tenths, then the 2 ones.

5	\cdot	6
2	1	4
-2	2	5
3	$\cdot 4$	9

$\left.\begin{array}{rccc}\mathrm{O} & \cdot & \text { Tth } & \text { Hth } \\ \hline 3 \cdot & \text { Thth } \\ - & 9 & 2 & 1 \\ 3 & \cdot & 7 & 5\end{array}\right) 0$

Multiplication

Multiplying by 10,100 and 1,000
Multiplying by multiples of 10 ,
$7 \times 100=7,000$

100 and 1,000
$7 \times 1,000=70,000$
$17 \times 1,000=17 \times 10 \times 10 \times 10=17,000$

$8 \times 10=80$

$$
17 \times 10=170
$$

$17 \times 100=17 \times 10 \times 10=1,700$

$6 \times 4=24$ $6 \times 400=2,400$

Multiplying a 4-digit by 2-digits

Year 6

Key Vocabulary					
Number	Geometry	Statistics	Measurement	Algebra	Ratio and proportion
ten thousands, hundred thousand, millions, ten million, place value, partition, interval, estimate, compare, order, equal to, rounding, negative, positive, column addition, column subtraction, order of operations, brackets, inverse operation, column multiplication, short division, long division, remainder, factor, common factor, common multiple, prime, composite, squared, cubed, multiple, estimate, long division, order of operations, numerator, denominator, common denominator, common factor, equivalent, simplify, simplest form, factor, whole number, mixed number, highest common factor, lowest common multiple, compare, order, ascending, descending, proper fraction, improper fraction, mixed number, convert, lowest common denominator, Per cent, percentages, part, whole, decimal, fraction, divide, share, multiply, convert, equivalent fraction, simplify, less than, more than, multiply, divide, decimal, decimal place, recurring decimal, placeholder, place value, tenth, hundredth, thousandth, product, fraction	degree, angle, obtuse, acute, reflex, right angle, protractor, triangle, isosceles, scalene, regular, polygon, quadrilateral, parallelogram, kite, rhombus, trapezium, diameter, radius, circumference, concentric, perimeter, net, pyramid, tetrahedron, cylinder, prism, cuboid, cube, vertically opposite angles, quadrant, four quadrants, translate, translation, x-axis, y-axis, axis, axes, horizontal, vertical, vertex, reflect, reflection.	mean, average, pie chart, segment, line graph, bar chart, percentage, fraction, data	metric, imperial, unit of measurement, gram, kilogram, pound, ounce, mass, millilitre, litre, pint, capacity, millimetre, centimetre, metre, millimetre, inch, foot, yard, mile, length, convert, conversion table, conversion graph, area, volume, perimeter, parallelogram, height, enclosed, width, length, square centimetre, square metre, base, estimate, formula, compound shape, cubic centimetre, cubic metre	algebra, formula, formulae, equation, unknown, variable, sequence, rule, term, substitute, expression, calculation, operation, generalise, inverse, solution	ratio, proportion, part, whole, scale, scale factor, notation, similar

\section*{Addition
 | H | T | O P Tth Hth | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 4 | 0 | - | 0 | | 9 |
| + | 4 | q | - | 8 | | 9 |
| I | 8 | q | . | q | | 8 |

Selecting mental methods for larger numbers where appropriate

$2,411,301+500,000=$?
This would be 5 more counters in the HTh place.

So, the total is $2,911,301$
$2,411,301+500,000=2,911,301$
$195,000+6,000=$?
$195+5+1=201$
195 thousands +6 thousands $=201$
thousands
So, $195,000+6,000=201,000$

$$
257,000+99,000=?
$$

£257,000
£100,000

I added 100 thousands then subtracted 1 thousand.

257 thousands +100 thousands $=357$ thousands

$$
257,000+100,000=357,000
$$

$$
357,000-1,000=356,000
$$

So, $257,000+99,000=356,000$

Understanding order of operations in calculations
002

(3×5-2 $\downarrow \downarrow$ $15-2=13$
16×4

trailer
 16×6

This can be written as: $16 \times 4+16 \times 6$

$$
\frac{16 \times 4}{64}+\frac{16 \times 6}{96}=160
$$

$$
\begin{aligned}
& 4+6 \times 16 \\
& 4+96=100
\end{aligned}
$$

$$
\begin{gathered}
(4+6) \times 16 \\
10 \times 16=160
\end{gathered}
$$

Subtraction

Comparing and selecting efficient methods

Th	H	T	O
$: 3$	$Q Q Q Q Q$	$O \because O Q$	$O O O O$
	Q	$Q Q$	$Q Q Q Q$

H	T	$\mathrm{O} \cdot$ Tth Hth		
3	0	$9 \cdot 6$	0	
-2	0	$6 \cdot$	4	0
1	0	$3 \cdot$	2	0

Th	H	T	O
$I^{8} \not{ }^{14}$		${ }^{1} 2$	
-	5	5	8
	3	9	4

Multiplication

4 groups of 2,345
This is a multiplication:

$4 \times 2,345$	
$2,345 \times 4$	Multiplying up to a
4-digit number by a	
single digit number	

Method I

Multiplying up to a 4-digit number by a 2-digit number

			2	3	5
	\times			2	1
			2	3	5
		4	7_{y}	0	0
		4	9	3	5

		2	3	5	$\begin{aligned} & 1 \times 5 \\ & 1 \times 30 \end{aligned}$
\times			2	1	
				5	
			3	0	
		2	0	0	1×200
		1	0	0	20×5
		6	0	0	20×30
	4	0	0	0	20×300
	4	q	3	5	21×235

$$
3 \times 3=9
$$

$$
\text { Multiplying by } 10,100 \text { and } 1,000
$$

$$
3 \times 0.3=0.9
$$

Represent 0.3.

$$
\begin{aligned}
8 \times 100 & =800 \\
8 \times 300 & =800 \times 3 \\
& =2,400 \\
2.5 \times 10 & =25 \\
2.5 \times 20 & =2.5 \times 10 \times 2 \\
& =50
\end{aligned}
$$

$$
3 \times 0.3=0.9
$$

Division

Dividing by a single digit

Dividing by a 2-digit number using long division

$1,260 \div 14=$? \quad Dividing by a 2-digit number using factors

\section*{| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |}

$$
\begin{aligned}
& 2,100 \longrightarrow \begin{array}{c}
\div 2
\end{array} \rightarrow \begin{array}{c}
\div 6
\end{array} \longrightarrow \\
& 2,100 \longrightarrow \begin{array}{c}
-6 \\
\hdashline 2
\end{array} \longrightarrow \\
& 2,100 \longrightarrow \div+4 \longrightarrow \\
& 2,100 \longrightarrow \begin{array}{c}
\square \\
\hdashline+\ldots \ldots \ldots
\end{array} \longrightarrow
\end{aligned}
$$

182 divided into groups of 13 There are 14 groups.

Dividing by 10, 100 and 1,000

Dividing decimals

$0 \cdot 8$				
$?$	$?$	$?$	$?$	

8 tenths divided into 4 groups. 2 tenths in $4 \times 2=8 \quad 8 \div 4=2$ each group.

So, $4 \times 0.2=0.8$
$8 \longdiv { 4 \cdot 2 4 }$

$$
\begin{aligned}
& \text { 1. } \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\hline & & & & & & & & & \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

$0 \cdot$
$4 \cdot{ }^{4} 2 \quad 4$

	$0 \cdot 5$
	$4 \cdot{ }^{4} 2{ }^{2} 4$

$\begin{array}{rrrr} & 0 & \cdot & 5 \\ & 4 \cdot{ }^{4} 2 & { }^{2} 4\end{array}$

